probability n. 1.或有;或然性。 2.【哲學(xué)】蓋然性〔在 certainly 和 doubt 或 posibility 之間〕。 3.【數(shù)學(xué)】幾率,概率,或然率。 4.或有的事;可能的結(jié)果。 5.〔pl.〕〔美俚〕天氣預(yù)測(cè)。 What are the probabilities 有幾分把握? The probabilities are against us [in our favour]. 趨勢(shì)對(duì)我們好像不利[有利]。 hit probability 命中率。 in all probability 很可能,大概,多半,十之八九。 probability of (missile survival) (飛彈不被擊落的)概率。 The probability is that ... 大概是…,很可能是…。 There is every probability of [that] ... 多半有,多半會(huì)。 There is no probability of [that] ... 很難有,很難會(huì)。
The two-stage modeling method for software project risk ’ s static bayesian networks is studied . the object-oriented modeling method for risk bayesian network is presented, structure refinement method based on network measurement is discussed, and probability parameters refinement method based on maximum likelihood estimates is put forward 為提高風(fēng)險(xiǎn)模型的準(zhǔn)確性,提出了基于網(wǎng)絡(luò)度量的風(fēng)險(xiǎn)貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)改進(jìn)算法,給出了基于極大似然估計(jì)的風(fēng)險(xiǎn)貝葉斯網(wǎng)絡(luò)概率參數(shù)更新算法。
In the first chapter, the thesis illustrates the foundation and significance of this thesis and simply summarizes their researchful history and actualities of bn and cbr . in the second chapter, the thesis firstly explains the notion of bn, afterwards studies the application of bn in data-mining ( dm ) in detail and also studies the learning of the probability parameter and the structuring framwork of bn in the condition of the full data and the lacked data 第一章,說明了本文的研究背景和意義并且簡(jiǎn)單總結(jié)了貝葉斯網(wǎng)和范例推理的研究歷史和現(xiàn)狀。第二章,首先給出了貝葉斯網(wǎng)絡(luò)的概念,然后詳細(xì)研究了貝葉斯網(wǎng)用于數(shù)據(jù)挖掘。分別對(duì)數(shù)據(jù)完整和不完整情況下,概率參數(shù)的學(xué)習(xí)和貝葉斯網(wǎng)結(jié)構(gòu)的建立作了研究。